Kantorovich type inequalities for ordered linear spaces

نویسندگان

  • Marek Niezgoda
  • MAREK NIEZGODA
  • M. Niezgoda
چکیده

In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 2004] and Bourin [Linear Algebra Appl., 416:890–907, 2006] are generalized. The inequalities are applied to C-algebras and unital positive maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Kantorovich Type Inequalities for Ordered Linear Spaces∗

In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

Integral type contraction and coupled fixed point theorems in ordered G-metric spaces

In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.

متن کامل

Convexity conditions of Kantorovich function and related semi-infinite linear matrix inequalities

The Kantorovich function (xT Ax)(xT A−1x), where A is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2dimensional Kantorovich function is convex if and only if the condition number of its matrix is less than or equal to 3 + 2 √ 2. Thus ...

متن کامل

Generalized $F$-contractions in Partially Ordered Metric Spaces

We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017